A vocabulary and set of grammatical rules for instructing a computer to perform specific tasks. The term programming language usually refers to high-level languages, such as BASIC, C, C++, COBOL, FORTRAN, Ada, and Pascal. Each language has a unique set of keywords (words that it understands) and a special syntax for organizing program instructions.
High-level programming languages, while simple compared to human languages, are more complex than the languages the computer actually understands, called machine languages. Each different type of CPU has its own unique machine language.
Lying between machine languages and high-level languages are languages called assembly languages. Assembly languages are similar to machine languages, but they are much easier to program in because they allow a programmer to substitute names for numbers. Machine languages consist of numbers only.
Lying above high-level languages are languages called fourth-generation languages (usually abbreviated 4GL). 4GLs are far removed from machine languages and represent the class of computer languages closest to human languages.
Regardless of what language you use, you eventually need to convert your program into machine language so that the computer can understand it. There are two ways to do this:
# compile the program
* interpret the program
See compile and interpreter for more information about these two methods.
The question of which language is best is one that consumes a lot of time and energy among computer professionals. Every language has its strengths and weaknesses. For example, FORTRAN is a particularly good language for processing numerical data, but it does not lend itself very well to organizing large programs. Pascal is very good for writing well-structured and readable programs, but it is not as flexible as the C programming language. C++ embodies powerful object-oriented features, but it is complex and difficult to learn.
The choice of which language to use depends on the type of computer the program is to run on, what sort of program it is, and the expertise of the programmer.
High-level programming languages, while simple compared to human languages, are more complex than the languages the computer actually understands, called machine languages. Each different type of CPU has its own unique machine language.
Lying between machine languages and high-level languages are languages called assembly languages. Assembly languages are similar to machine languages, but they are much easier to program in because they allow a programmer to substitute names for numbers. Machine languages consist of numbers only.
Lying above high-level languages are languages called fourth-generation languages (usually abbreviated 4GL). 4GLs are far removed from machine languages and represent the class of computer languages closest to human languages.
Regardless of what language you use, you eventually need to convert your program into machine language so that the computer can understand it. There are two ways to do this:
# compile the program
* interpret the program
See compile and interpreter for more information about these two methods.
The question of which language is best is one that consumes a lot of time and energy among computer professionals. Every language has its strengths and weaknesses. For example, FORTRAN is a particularly good language for processing numerical data, but it does not lend itself very well to organizing large programs. Pascal is very good for writing well-structured and readable programs, but it is not as flexible as the C programming language. C++ embodies powerful object-oriented features, but it is complex and difficult to learn.
The choice of which language to use depends on the type of computer the program is to run on, what sort of program it is, and the expertise of the programmer.
1 Komentar untuk "programming language"
thanx 4 your publishing